

CIRCULAR:-

A reference is invited to the Syllabi relating to the B.Sc. degree course, vide this office Circular No. UG/98 of 2015-16, dated 13th October, 2016 and the Principals of affiliated Colleges in Science are hereby informed that the recommendation made by the Ad-hoc Board of Studies in Chemistry at its meeting held on 7th July, 2016 has been accepted by the Academic Council meeting held on 14th July, 2016 vide item No. 4.13 and that in accordance therewith, the revised syllabus as per the Choice Based Credit System for T.Y. B.Sc. programme in Chemistry (Sem. V & VI), which are available on the University's web site (www.mu.ac.in) and that the same has been brought into force with effect from the academic year 2016-17.

MUMBAI - 400 032 16 November, 2016

To,

The Principals of the affiliated Colleges in Science.

A.C/4.13/14.07.2016

No. UG// SEA of 2016

MUMBAI-400 032

16 November, 2016

Copy forwarded with Compliments for information to:-

1) The Co-ordinator, Faculties of Science,

2) The Chairman, Board of Studies in Chemistry,

3) The Professor-cum-Director, Institute of Distance & Open Learning (IDOL) The Director, Board of College and University Development, 4) 5) The Co-Ordinator, University Computerization Centre, 6) The Controller of Examinations.

(Dr.M.A.Khan)

REGISTRAR

PTO..

UNIVERSITY OF MUMBAI

Syllabus for sem V & VI Program: B.Sc. Course: CHEMISTRY

(Credit Based Semester and Grading System with effect from the academic year 2016–2017)

T.Y.B.Sc.

CHEMISTRY Credit Based Semester and Grading System To be implemented from the Academic year 2016-2017

SEMESTER V

Theory

Course	UNIT	TOPICS	Credits	L / Week
USCH501	Ι	 1.1 Colligative Properties of Dilute Solutions (8L) 1.1.1 Dilute solution, colligate properties, Raoult's law, relative lowering of vapour pressure. 1.1.2 Elevation in boiling point of a solution, thermodynamic derivation relating elevation in the boiling point of a solution and the molar mass of the non-volatile solute. 1.1.3 Depression in freezing point of a solution, thermodynamic derivation relating the depression in the freezing point of a solution and the molar mass of the non-volatile solute. 1.1.4 Osmotic pressure, van't Hoff's equation for osmotic pressure, (derivation is expected) and determination of molar mass of the solute. Abnormal molar masses of solutes and van't Hoff factor (calculation of Degree of Association and Degree of Dissociation.) 1.2 Phase Rule (7L) 1.2.1 Gibb's phase rule and terms involved in the equation. 1.2.2 Application of phase rule to ONE component systems (i) water system, (ii) sulphur system 1.2.3 Application of phase rule to TWO component systems, condensed systems, condensed phase rule, eutectic systems (Lead-Silver system), desilverisation of lead. 1.2.4 Introduction to three component system, explanation of phase diagram for three liquids forming one immiscible pair. 	2.5	1

	2.1 Surface Chemistry & Catalysis	
	(9L)	
	2.1.1 Adsorption: Physical and	
	Chemical Adsorption, types of	
	adsorption isotherms . Langmuir's	
	adsorption isotherm (Postulates and	
	derivation expected). B.E.T. equation	
	for multilayer adsorption, (derivation	
	not expected). significance of the terms	
	involved in the equation is	
	expected.),determination of surface	
	area of an adsorbent using B.E.T.	
	equation. Numericals on surface area	
	determination are expected.	
	2.1.2 Catalysis: Homogeneous and	
	heterogeneous catalysis, catalytic	
	activity and selectivity, promoters,	
	inhibitors, catalyst poisoning and deactivation,	
	2.1.3 Acid-Base catalysis , mechanism	
п		
11	and kinetics of acid-base catalyzed	
	reactions, effect of pH on acid-base	
	catalyzed reactions. Mechanism and	
	kinetics of enzyme catalyzed reaction	
	(Michaelis-Menten equation).	
	2.2 Colloids (6L)	
	2.2.1 Introduction to colloidal state of	
	matter.	
	2.2.2 Origin of charge on colloidal	
	particles. Concept of electrical double	
	layer, zeta potential, Helmholtz and	
	Stern model, Electro-kinetic	
	phenomena:1.Electrophoresis,	
	2.Electrophoresis,	
	3. Streaming potential	
	4. Sedimentation potential .	
	2.2.3 Colloidal electrolytes.	
	2.2.4 Donnan Membrane Equilibrium.	
	2.2.5 Surfactants, micelle formation,	
	applications of surfactants in	
	detergents, food industry, in pesticide	
	formulations.	
	3.1 Electrochemistry –	
	Electrochemical cells (15L)	
	3.1.1 Lewis concept of Activity and	
	Activity coefficient, Mean ionic	
III	activity and mean ionic activity	
111	coefficient γ_{+-} of an electrolyte,	
	expression for activities of electrolytes	
	of different valence type, ionic strength	

3.1.2 Classification of cells: 1.chemical cells without transference 2.Concentration cells with and without
2.Concentration cells with and without
transference (derivations of
expression for concentration cell EMF
are expected) Origin of liquid-liquid
junction potential and its elimination
using a salt bridge.
3.1.3 Applications of EMF
measurements in the determination
of 1 . pH of a solution using
quinhydrone and glass electrode. 2
solubility and solubility product of
sparingly soluble salts using chemical
cell and concentration cell method 3 .
determination of liquid-liquid junction
potential .
4.1 Introduction to Polymers (8L)
4.1.1 Basic terms : macromolecule,
monomer, repeat unit, degree of
polymerization.
4.1.2. Classification of polymers
based on (i) source, (ii) structure, (iii)
thermal response, (iv) physical
properties.
4.1.3. Molar masses of polymers: 1.
Number average molar mass, 2.Weight
average molar mass, 3. Viscosity
average molar mass, monodispersity,
polydispersity.
4.1.4. Methods of determining molar
masses of polymers : 1. Ultrcentrifuge
method (Limiting velocity method
IV only). Viscosity method (Mark-
Houwink equation).
4.1.5. Introduction to light emmiting
polymers (characteristics, method of
preparation and it's application are
expected).
4.2 Crystalline State (7L)
4.2.1. Laws of Crystallography
4.2.2 . Characteristics of simple cubic,
face centered and body centered cubic
system, inter planar distance in cubic
lattices (only expressions for ratios of
inter planar distances are expected).
4.2.3. Use of X- rays in the study of
crystal structure, Bragg's equation (
derivation expected), X- ray diffraction
method of studying crystal lattices,
structure of NaCl and KCl,

		determination of Avagadro number.		
		4.2.4. Elementary idea of defects in		
		crystals- Frenkel defect and Schottky		
		defect.		
		1. Chemical Bonding And Solid State		
		Chemistry (15L)		
		1.1 Molecular Symmetry (7L)		
		1.1.1 Introduction and Importance.		
		1.1.2 Symmetry elements and		
		symmetry operations.		
		1.1.3 Concept of a Point Group with		
		illustrations using the following point		
		gro ups: (i) $C_{\alpha\nu}$ (HCl), (ii) $D_{\alpha h}$ (H2),		
USCH502	Ι	(iii) C_{2v} (H ₂ O), (iv) C_{3v} (NH ₃), (v) C_{2h}	2.5	1
		$(\text{trans} - \text{trichloroethylene}), \text{ and } (vi) D_{3h}$		
		(BCl ₃).		
		1.2 Molecular Orbital Theory for		
		Polyatomic Species (5L)		
		1.2.1 Simple triatomic species: H_3^+ and		
		H ₃ (correlation between bond angle and		
		Molecular orbitals).		
		Term such as Walsh correlation diagram,		
		Symmetry Adapted Linear Combinations		
		(SALCs), Ligand Group orbitals (LGOs),		
		transformation of atomic orbitals into		
		appropriate symmetry types, expected to be		
		discussed		
		1.3 (3L)		
		Other molecules (considering		
		only σ-bonding): i) BeH2, ii) H2O,		
		Explanation of terms viz.crystal		
		lattice, lattice points, unit cells and		
		lattice constants.		

		1	
II	 Solid Materials (15L) Structures of Solids (10L) Structures of Solids (10L) I Importance of solid state chemistry. Classification of solids on the basis of bonding. Classification of solids on the basis of bonding. Closest packing of rigid spheres (hcp, ccp), packing density in simple cubic, bcc, fcc and hcp lattices (numerical problems expected). Point defects with respect to Frenkel and Schottky defects expected. Structure metallic solids. Tetrahedral and octahedral interstitial voids in ccp lattice, tetrahedral holes, limiting radius ratios for different coordination numbers and their significance, calculation of limiting radius ratio for coordination number 4. Structures of sodium chloride and cesium chloride. Superconductivity (05L) Superconductivity, Meissner effect. Different superconducting materials viz, convential superconductors, organic superconductors, organic superconductors. Action and high temperature Superconductors. Applications of superconducting materials. 		1
III	 3. Chemistry of elements (15L) 3.1 Inner transition elements (3L) 3.1.1 Introduction: position of f-block elements and comparison between lanthanides and actinides 3.1.2 The shapes of <i>f</i>-orbitals. 3.1 Lanthanides Series (10L) 3.2.1 Chemistry of lanthanides with reference to (i) lanthanide contraction, (ii) Oxidation states (iii) magnetic and spectral properties, 3.2.2 Occurrence, extraction and separation of lanthanides by Solvent extraction. 3.2.3 Applications of lanthanides. 		1

	[1
		3.3 Actinides Series (2L)		
		3.3.1 Chemistry of Uranium and with		
		reference to occurrence, extraction		
		(solvent extraction method),		
		3.3.2 Properties and applications.		
		4. Solution Chemistry		
		4.1 Acid-base Chemistry in Aqueous		
		Medium (8L)		
		4.1.1 Acidity of mono- and polyatomic		
		cations.		
		4.1.2 Basicity of mono- and polyatomic		
		anions (discussion for 4.1.1 as well as		
		4.1.2 to Include Latimer equation and		
	IV	predominance diagrams).		1
		4.2 Chemistry in Non-aqueous		-
		Solvents (7L)		
		4.2.1 Classification of solvents and		
		importance of non-aqueous solvents.		
		4.2.2 Characteristics and study of		
		liquid ammonia, dinitrogen tetraoxide and acetic acid as non-aqueous		
		-		
		solvents with respect to (i) acid-base reactions and (ii) redox reactions.		
		1.1. Mechanism of Organic		
		Reactions (15L)		
		1.1.1 Thermodynamic and Kinetic		
		control of organic reactions: Concept		
		with mechanisms of the following		
		reactions: addition of HX to butadiene;		
		sulfonation of naphthalene.		
		Nucleophilicity/ electrophilicity vs		
		Basicity/acidity.		
		1.1.2 Mechanism of elimination		
		reactions, with stereochemistry: E1 and		
		E2 reactions: regioselectivity (Saytzeff		
		and Hofmann rules). 1.1.3 Mechanism of reactions of		
USCH503	Ι	carbonyl compounds with	2.5	1
		nucleophiles: 1.1.3.1 Formation of		
		acetals/ketals from aldehydes and		
		ketones. 1.1.3.2 Reaction of aldehydes		
		and ketones with primary and		
		secondary amines. 1.1.3.3 Acyl		
		nucleophilic substitution (tetrahedral		
		mechanism): Acid catalysed		
		esterification of Carboxylic acids and		
		base promoted hydrolysis of esters.		
		1.1.4 Mechanism of rearrangements		
		with examples and stereochemistry		
		wherever applicable. 1.1.4.1 Migration		
		to electron deficient carbon: Pinacol,		

		Benzylic acid. 1.1.4.2 Migration to	
		electron deficient nitrogen: Beckmann,	
		Hofmann.	
		1.1.5 Mechanism of the following	
		reactons with synthetic application:	
		Claisen condensation, Michael	
		addition.	
		2. Stereochemistry (15L)	
		2.1.1 Molecular chirality and element	
		of symmetry: Mirror Plane symmetry	
		(inversion centre), rotation-reflection	
		(alternating) axis, Chirality of	
		compounds without stereogenic	
		centre: cummulenes, spirans and	
		biphenyls.	
		2.1.2 Stability of cycloal kanes: Strains	
		in cycloalkanes-angle,eclipising,	
		transannular (3 to 8 membered).	
		Conformations of cyclohexane, mono-	
		and di- alkyl cyclohexanes and their	
		relative stabilities.	
	II	2.1.3 Stereo selectivity and Stereo	1
	11	specificity: Idea of enantioselectivity	-
		(ee) and diastereoselectivity	
		(de).Topicity-enantiotopic and	
		diastereotopic atoms, groups and faces.	
		Stereochemistry of-	
		(1) Substitution reactions- SN1, SN2,	
		SNi (reaction of alcohol with thionyl	
		chloride). (2) E ₂ -anti-elimination-Base	
		induced dehydrohalogenation of 1-	
		bromo-1,2- diphenylpropane.	
		(3) Addition reactions to olefins-i)	
		catalytic hydrogenation ii) bromination	
		(electrophilic anti addition) (iii)syn-	
		hydroxylation (molecular addition)	
		with OsO4 and KMnO4.	
		3.1 Carbohydrates (10L)	
		3.1.1 Introduction: Classification,	
		Sources, Reducing and non-reducing	
		sugars DL notation.	
		3.1.2 Structures of monosaccharides:	
		Fischer projection (4-6 carbon	
	ш	monosaccharides and Haworth	1
	111	formula-Furanose and pyranose forms	-
		of pentoses and hexoses.	
		Interconversion :open and Haworth	
		forms of monosaccharides with 5 and	
		6 carbons. Chair conformation with	
		stereochemistry of D-glucose and D-	
		fructose. Stability of chair forms of D-	

	glucose.		
	3.1.3 Determination of open chain		
	configuration- of D-glucose assuming		
	the configuration of D-arabinose; and		
	of D-fructose assuming the		
	configuration of D-glucose.		
	3.1.4 Anomers and epimers of		
	monosaccharides. Enantiomers and		
	diastereomers of glucose. Mutarotation		
	(with mechanism) in D-glucose.		
	3.1.5 Chain lengthening and shortening		
	reaction: Modified kiliani-fischer		
	synthesis. Wohl method.		
	3.1.6 Reactions of D-glucose and D-		
	fructose: (a) osazone formation (b)		
	reduction- H2/Ni, NaBH4 c)oxidation-		
	bromine water, HNO3, HIO4. D)		
	interconversion of D-glucose		
	and D-fructose e) acetylation f)		
	methylation [e and f with cyclic		
	pyranose form].		
	3.1.7 Commercial importance of		
	carbohydrates in pharmaceutical,		
	paper, food and Textile industries.		
	3.2. IUPAC Nomenclature (5L)		
	IUPAC systematic and accepted trivial		
	nomenclature of the following classes		
	of compounds, including substituted		
	ones (up to 2 substituents/ functional		
	groups):		
	3.2.1 (a)Bicyclic compounds- spiro-		
	,fused, and bridged (upto 11carbon		
	atoms)-saturated and unsaturated		
	compounds.		
	3.2.2 (b) Biphenyls.3.2.3 (c) Cummulenes upto 3 double		
	bonds (d) Monocyclic (5 and 6		
	membered) aromatic and non-aromatic		
	heterocyclic compounds containing a		
	maximum of two hetero atoms among		
	N,O,S.		
	3.1.1 Introduction:Classification,		
	Sources, Reducing and non-reducing		
	sugars DL notation.		
	3.1.2 Structures of monosaccharides:		
	Fischer projection (4- 6 carbon		
	monosaccharides and Haworth		
	formula-Furanose and pyranose forms		
	of pentoses and hexoses.		
	Interconversion :open and Haworth		
	forms of monosaccharides with 5 and		
	6 carbons. Chair conformation with		
L	o caroons. Chan comormation with	I	

1		
	stereochemistry of D-glucose and D-	
	fructose. Stability of chair forms of D-	
	glucose.	
	3.1.3 Determination of open chain	
	configuration- of D-glucose assuming	
	the configuration of D-arabinose; and	
	of D-fructose assuming the	
	configuration of D-glucose.	
	3.1.4 Anomers and epimers of	
	monosaccharides. Enantiomers and	
	diastereomers glucose. Mutarotation	
	(with mechanism) in D-glucose.	
	3.1.5 Chain lengthening and shortening	
	reaction: Modified kiliani-fischer	
	synthesis. Wohl method.	
	3.1.6 Reactions of D-glucose and D-	
	fructose: (a) osazone formation (b)	
	reduction- H2/Ni, NaBH4 c)oxidation-	
	bromine water, HNO ₃ , HIO ₄ . D)	
	interconversion of D-glucose	
	and D-fructose e) acetylation f)	
	methylation [e and f with cyclic	
	pyranose form].	
	3.2. IUPAC Nomenclature (5L)	
	IUPAC systematic and accepted trivial	
	nomenclature of the following classes	
	of compounds, including substituted	
	ones (up to 2 substituents/functional	
	groups):	
	3.2.1 (a)Bicyclic compounds- spiro-	
	,fused, and bridged (upto 11carbon	
	atoms)-saturated and unsaturated	
	compounds.	
	3.2.2 (b) Biphenyls.	
	3.2.3 (c) Cummulenes upto 3 double	
	bonds (d) Monocyclic (5 and 6	
	membered) aromatic and non-aromatic	
	heterocyclic compounds containing a	
	maximum of two hetero	
	atoms among N,O,S.	
	4.1. Heterocyclic Chemistry (8L)	
	4.1.1 Introduction: Electronic structure	
	and aromaticity of furan,	
	pyrrole, thiophene and pyridine.	
	4.1.2 Synthesis: Synthesis of furans,	
Г		1
	synthesis. Pyridines by Hantzsch	
	synthesis and from 1,5-diketones.	
	4.1.3 Reactivity: Reactivity towards	
	electrophilic substitution reactions- of	
	furan, pyrrole and thiophene on basis	

of stability of intermediate; and of		
pyridine on the basis of electron		
distribution.Nucleophilic substitution		
reaction of pyridine on the basis of		
electron distribution.		
4.1.4 Reactions of heterocycles: The		
following reactions of furan, pyrrole		
and thiophene: Halogenation,		
Nitration, Sulphonation, Vilsmeir		
formylation reaction, Friedel-Crafts		
reaction. Furan: Diels-Alder reaction.		
Ring opening of furan. Pyrrole: Acidity		
and basicity of pyrrole -Comparison of		
basicity of pyrrole and		
pyrrolidine, Acid catalyzed		
polymerization of pyrrole. Pyridine:		
Basicity. Comparison of basicity of		
pyridine, pyrrole and piperidine.		
Sulphonation of pyridine, with and		
without catalyst. Reduction.Oxidation		
of alkyl pyridines and action of		
sodamide (Chichibabin reaction).N-		
methylation of pyridine. Quaternization		
of piperdine, pyrrolidine and Hofmann		
elimination of the quaternary salts.		
4.2. Organic Synthesis (7L)		
4.2.1 Introduction: Criteria for ideal		
organic synthesis. Yield and		
selectivity. Multi- component synthesis		
– with examples, Mannich reaction,		
Hanztsch synthesis of		
pyridines (without mechanism).		
4.2.2 Illustrative synthesis of		
industrially important compounds:		
Ibuprofen (chiral synthesis),		
paracetamol (green synthesis), L-		
ascorbic acid (from D-glucose),		
norfloxacin, thyroxine, vanillin,		
methyl dihydrojasmonate (Hedione),		
Bifenox-I, pigment red 242, indigo, 2-		
hydroxy-3-amino-5-nitrobenzene		
sulphonic acid.		
4.2.3 Newer methods of organic		
synthesis: Introduction to the use of the		
following in organic synthesis:		
Ultrasound, microwaves, PTC.		
4.1.1 Introduction: aromaticity of		
furan,pyrrole,thiophene and		
pyridine.		
4.1.2 Synthesis: Synthesis of furans,		
pyrroles, and thiophenes by Paal-Knor		
synthesis. Pyridines by Hantzsch	1	

I	synthesis and from 1,5-diketones. 4.1.3	
	Reactivity: Reactivity towards	
	electrophilic substitution reactions- of	
	furan, pyrrole and thiophene on basis	
	of stability of intermediate; and of	
	pyridine on the basis of electron	
	distribution. Nucleophilic substitution	
	reaction of pyridine on the basis of	
	electron distribution.	
	4.1.4 Reactions of heterocycles: The	
	following reactions of furan, pyrrole	
	and thiophene: Vilsmeir formylation	
	reaction, Friedel-Crafts reaction.	
	Furan: Diels-Alder reaction. Ring	
	opening of furan. Pyrrole: Acidity and	
	basicity of pyrrole-Comparison of	
	basicity of pyrrole and pyrrolidine,	
	Acid catalyzed polymerization of	
	pyrrole. Pyridine: Basicity.	
	Comparison of basicity of pyridine,	
	pyrrole and piperidine. Sulphonation	
	of pyridine, with and without catalyst.	
	Reduction.Oxidation of alkyl	
	pyridines and action of sodamide	
	(Chichibabin reaction). N-methylation	
	of pyridine.Quaternization of	
	piperdine, pyrrolidine and Hofmann	
	elimination of the quaternary salts.	
	4.2. Organic Synthesis (7L)	
	4.2.1 Introduction: Criteria for ideal	
	organic synthesis. Yield and	
	selectivity. Multi- component	
	synthesis – with examples, Mannich	
	reaction, Hanztsch synthesis of	
	pyridines (without mechanism).	
	4.2.2 Illustrative synthesis of	
	industrially important compounds:	
	Ibuprofen (chiral synthesis),	
	paracetamol (green synthesis), L-	
	ascorbic acid (from D-glucose),	
	norfloxacin, nalidixic acid, vanillin,	
	methyl dihydrojasmonate (Hedione),	
	Bifenox-I, pigment red 242, 2-	
	hydroxy-3-amino-5-nitrobenzene	
	sulphonic acid.	
	4.2.3 Newer methods of organic	
	synthesis: Introduction to the use of	
	the following in organic synthesis:	
	Ultrasound, microwaves, PTC.	

USCH504	Ι	1. Treatment of analytical data-I and sampling (15 L) 1.1 Treatment of Analytical Data (7L) Types of errors, determinate and indeterminate errors, minimization of errors, constant and proportionate errors, accuracy and precision, measures of dispersion and central tendency: mean, median, average deviation, relative average deviation, standard deviation, variance, coefficient of variation.[Numerical problems expected] 1.2 Sampling (8L) Terms involved, importance of sampling, sampling techniques, sampling of gases, ambient and stack sampling, equipment used, sampling of homogeneous and heterogeneous liquids, sampling of static and flowing liquids, methods and equipments used, sampling of solids, importance of particle size and sample size, samples used, need for the reduction in the sample size, collection, preservation and disardution of the sample	2.5	1
	II	 and dissolution of the sample. 2. Titrimetric analysis-I and UV- Visible spectroscopy. (15L) 2.1 Acid-base Titrations (5L) Construction of titration curves and choice of indicators in the titration of [1] strong acid and strong base, [2] strong acid and weak base, [3] weak acid and strong base, [4] weak acid and weak base. 2.2 Precipitation titrations (4L) Argentimetric titrations, construction of the titration curve, Volhard's method, Mohr's method, adsorption indicators, theory and applications. 2.3 U.V. Visible Spectroscopy (4L) Photometers and spectrophotometers, Instrumentation in the case of single and double beam spectrophotometers, Qualitative and quantitative analysis, calibration cure method. 		1

III	 3. Methods of separation-I (15L) 3.1 Solvent Extraction (8L) Partition coefficient and distribution ratio, extraction efficiency, separation factor, role of complexing agents in solvent extraction, chelation, ion pair formation, solvation, types of solvent extraction: batch, continuous. [Numerical problems expected] 3.2 Chromatography (2L) Introduction to chromatographic techniques, classification of chromatographic techniques. 3.3 Planar Chromatography (5L) Principle, techniques and applications of [1] Paper chromatography [2] Thin layer chromatography 	1
IV	 4. Optical methods (15L) 4.1 Atomic Spectroscopy (7L) Absorption and emission spectra, energy level diagrams, process involved in atomization, flame photometry, flame atomizer, types of burners, monochromators and detectors, atomic absorption spectroscopy; flame and electrothermal atomizer, sources, instrumentation, quantitative applications of atomic absorption and flame photometry, calibration curve method, standard addition and internal standard method. 4.2 Molecular Fluorescence and Phosphorescence Spectroscopy (4L) Theory, instrumentation and applications 4.3 Turbidimetry and Nephelometry (4L) Scattering of light, effect of concentration, particle size and wavelength on light scattering, instrumentation and applications. 	1

Practicals

	Practicals of Course USCH501		
	Physical Practicals		
	Chemical Kinetics –		
	To determine the order between K ₂ S ₂ O ₈ & KI		
	by fractional change method.		
	Viscosity –		
	To determine the molecular weight of high		
	polymer polyvinyl alcohol (PVA) by		
	viscosity measurement.		
	OR		
	To determine the radius of a glycerol		
	molecule by viscosity measurement.		
	Potentiometry –		
	1. To determine the amount of Fe(II) in the		
	given solution by titration with a		
	standard K ₂ Cr ₂ O ₇ solution and hence to find the formal radox potential of		
	find the formal redox potential of Fe^{3+}/Fe^{2+}		
	2. To determine the solubility product and		
	solubility of AgCl potentiometrically		
USCHP05	using chemical cell.	3	8
	OR	C	0
	3. To determine the solubility product and		
	solubility of AgCl potentiometrically		
	using concentration cell.		
	Colorimetry –		
	To determine the amount of Fe(III) present		
	in the given solution by using salicylic acid		
	by colorimetric titration.(static method)		
	(=525 nm)		
	pH –Metry –		
	To determine acidic and basic dissociation		
	constants of amino acid hence to calculate		
	isoelectric point.		
	Course USCH502		
	Inorganic Practicals		
	Inorganic preparations		
	1. Potassium diaquo bis-		
	(oxalate)cuprate		
	$(II)K_2[Cu(C_2O_4)_2.(H_2O]]$		

3. A	CuCl2-2DMSO Bis(ethylene diamine)iron(II)sulphate[C ₂ H ₄ (NH ₂) ₂ FeSO ₄ .4H ₂ O]. Skill based Qualitative preparation of Chromium (II)acetate Cr(OAc) ₂ so that the following outcomes are achieved: • Setting up reactor for Cr(II)	
	following outcomes are	
	achieved:	
	• Setting up reactor for Cr(II)	
	ions	
	Identification of oxidation	
	states of Chromium	
	Preparation of	
	chromium(II)acetate	
	 Isolation of the product 	

	Volumetric analysis		
	 Determination of magnesium from the supplied commercial sample of Milk of magnesia tablet Estimation of Nickel(II)complexome- trically using murexide indicator (Students are expected to standardize supplied EDTA solution using ZnSO₄.7H₂0) 		
	Practicals of Course USCH503		
USCHP06	 i. Separation of binary (solid-slid) mixture.(Weights and physical constant of both crude components of the mixture are to be reported. (Minimum 4 mixtures) ii. Identification of an organic compound of known chemical type. (Minimum 4 mixtures) Syllabus for Organic Chemistry Sem-VI Organic preparations Acetylation of hydroquinone. Nitration of nitrobenzene. Hydrolysis of ethyl benzoate. Bromination of acetanilide. Course USCH504 Analytical Practicals Estimation of persulphate in the given sample by the method of back titration. Determination of the calcium and the magnesium content of a dolomite sample. Determination of glucose content of a honey sample by Wilstater's method. 	3	8
	 4. Determination of the amount of fluoride in the given solution colorimetrically. 5. Determination of Vitamin C content of a given tablet by titration with sodium hydroxide pH metrically 		

T.Y.B.Sc. Chemistry Credit Based Semester and Grading System To be implemented from the Academic year 2016-2017

SEMESTER VI

Theory

Course	UNIT		Credits	L / Week
USCH601	Ι	 1.1 Molecular Spectroscopy –I (15L) 1.1.1 Dipole moment: Dipole moment, polarization of a bond, bond moment, dipole moment and molecular structure. 1.1.2 Rotational Spectrum: Rotational spectrum of a diatomic molecule, rigid rotor, moment of inertia, energy levels, conditions for obtaining pure rotational spectrum, selection rule, nature of spectrum, determination of inter nuclear distance and isotopic shift. 1.1.3 Vibration (IR) spectrum: Vibrational motion, degrees of freedom, modes of vibration, vibrational spectrum of a diatomic molecule, simple harmonic oscillator, energy levels, zero point energy, conditions for obtaining vibrational spectrum. 1.1.4 Vibration-Rotation spectrum of diatomic molecule vibrating rotor, energy levels, selection rule, nature of spectrum. 1.1.4 Vibration-Rotation spectrum of diatomic molecule vibrating rotor, energy levels, selection rule, fundamental band, overtones . Application of vibration-rotation spectrum in determining Force constant, determination and significance. Introduction to infrared spectra of simple molecules like H₂O and CO₂ 1.1.5 Raman Spectroscopy : Scattering of electromagnetic radiation, Rayleigh scattering, Raman scattering, nature of Raman spectrum, comparative study of IR and Raman spectra, rule of mutual exclusion.(example of CO₂molecule). 2.1 Basics of Quantum Chemistry (10L) 2.1.1 Classical mechanics, limitations of 	2.5	1
	Π	classical mechanics, Black body radiation,photoelectric effect, Compton effect.2.1.2 Introduction to quantum mechanics,		1

Planck's theory of quantization, wave	
particle duality, de-Broglie equation,	
Heisenberg's uncertainty principle.	
2.1.3 Progressive and standing waves,	
boundary conditions, Schrodinger's time	
independent wave equation(derivation not	
expected)., interpretation and properties of	
wave function.	
2.1.4 Postulates of quantum mechanics (
following are to be considered), 1. state	
function and it's significance2. Concept of	
operators : definition, addition, subtraction	
and multiplication of operators,	
commutative and non- commutative	
operators, linear operator, Hamiltonian	
operator, 3. Eigen function and eigen value,	
eigen value equation.	
2.2 Applied Electrochemistry (5L)	
2.2 Appred Electrochemistry (SL) 2.2.1 Polarization, concentration	
polarization and it's elimination	
2.2.2 Decomposition potential,	
experimental determination of	
decomposition potential, factors affecting	
decomposition potential (nature of	
electrolyte, nature of electrodes and	
temperature) Tafel's equation for hydrogen	
overvoltage, Overvoltage, experimental	
determination of over-voltage,	
2.2.3	
Electroplatingobjectives and procedures	
 3.1 Renewable Energy Sources (5L)	
3.1.1. Lithium ion cell.	
3.1.2 . Fuel cells; Choice of fuel and	
oxidant, Bacon's H ₂ and O ₂ fuel cell.	
3.1.3 . Solar cells, solar energy, photovoltaic	
••	
5.2 Nuclear Magnetic Resonance	
spin-spin relaxation and spin-lattice	
relaxation).	
3.2.2 . NMR Spectrometer, chemical shift,	
shielding and deshielding of protons, low	
resolution n.m.r. spectrum of methanol and	
 effect, semiconductors as solar energy converters, silicon solar cell 3.1.4. Hydrogen : Fuel of the future, production of hydrogen by direct electrolysis of water, advantages of hydrogen as a universal energy medium. 3.2 Nuclear Magnetic Resonance Spectroscopy (6L) 3.2.1. Nuclear spin, magnetic moment, nuclear 'g' factor, energy levels, Larmor precession, Relaxation processes in n.m.r. (spin-spin relaxation and spin-lattice relaxation). 3.2.2. NMR Spectrometer, chemical shift, shielding and deshielding of protons, low 	

	IV	 3.3 Chemical Kinetics (4 L) 3.3.1 Collision theory of reaction rates, application of collision theory to 1. unimolecular reaction and 2. bimolecular reaction (Lindemann theory, derivation expected). Merits and drawbacks of collision theory. 3.3.2 Classification of reactions as slow, fast and ultra-fast. study of kinetics of fast reactions by Stop flow method. 4.1 Nuclear Chemistry 4.1.1 Types of nuclear radiations and their characteristics, behaviour of ion pairs in electric field, detecton and measurement of nuclear radiations using G. M. Counter and Scintillation Counter. 4.1.2 Kinetics of radioactive decay, units of radioactivity (Curie, Bequerel, Rutherford) 4.1.3 Radioactive equilibrium (secular and transient), determination of radioactive constants for radio-elements having 1. moderate half life, 2. long half life 3.extremely long or short half life. 4.1.4 Use of radioisotpes as tracers in 1. chemical investigations- reaction mechanism, 2. age determination- dating by carbon-14 4.1.5 Nuclear reactions – nuclear transmutation, artificial radioactivity Q-value of nuclear reaction, threshold energy. 4.1.6 Fissile and fertile material, nuclear fission, chain reaction, factor controlling fission process. (multiplication factor and critical size or mass of fissionable material)., nuclear power reactor and breeder reactor. 		1
USCH602	Ι	 Coordination Chemistry (15L) 1.1 Crystal Field Theory (CFT) 1.1.1 Basic tenets of Crystal field theory and effect of crystal field on central metal valence orbitals. 1.1.2 Splitting of <i>d</i> orbitals in octahedral, tetrahedral and square planar complexes. 1.1.3 Crystal field splitting energy (10⁴/₀) for octahedral complexes and factors affecting the magnitude of <i>L</i>₁₀. 1.1.4 Crystal field stabilization energy (CFSE), calculation of CFSE, for octahedral and tetrahedral complexes with 	2.5	1

	$1 \downarrow 1 \downarrow 1 \downarrow 0 \downarrow 1 \downarrow 1 \downarrow 1 \downarrow 1 \downarrow 1 \downarrow 1 \downarrow $		
	d^{T} to d^{TO} metal ion configurations.		
	1.1.5 Effect of crystal field splitting on		
	i) Ionic radius and ii) Lattice energy.		
	1.1.6 Theoretical failure of the CFT model.		
	1.1.7 Experimental evidence for co-		
	valence in co-ordination compounds.(i)		
	ESR spectrum of [IrCl6] ²⁻ (ii) NMR		
	spectrum of tris (acetyl acetanato)		
	vanadium complex, (iii) Intensities of d - d		
	transitions, and (iv) Nephelauxetic effect.		
	Consequences of crystal field splitting on		
	various properties such as ionic radii,		
	hydration energy, lattice energy, enthalpies		
	of formation, colour and magnetic		
	properties.		
	1.2 Molecular Orbital Theory (MOT) of		
	Coordination Complexes		
	1.2.1 Application to octahedral complexes		
	in case of (i) $[Ti(H_2O)]^{3+}$, (ii) Fluoro		
	complexes of Fe(II) and Fe (III) and (iii)		
	Cyano complexes of Fe(II) and Fe (III).		
	1.2.2 Effect of pi-bonding an ligand field		
	splitting parameter in $M \rightarrow L$ and $L \rightarrow M$		
	interactions.		
	1.3 Electronic States and Terms for		
	Polyelectronic Atoms		
	1.3.1 Introduction: electronic		
	configuration and electronic states, Term		
	symbols, coupling of spin momenta		
	(M _s),orbital momenta (M _l)and spin- orbit		
	coupling or Russell-Saunders coupling.		
	1.3.2 Determination of Terms for p^2		
	electronic configuration (as in a		
	carbon atom).		
	1.3.3 Terms and micro-states for transition		
	metal atoms/ions.		
	2. Properties of Coordination compounds	,	
	(15L)		
	2.1 Stability of Complexes (5L)		
	2.1.1 Thermodynamic stability and kinetic		
	stability of complexes with examples.		
	2.1.2 Stability constants: Stepwise and		
	overall constants and their inter-		
	relationship.		
	2.1.3 Factors affecting thermodynamic		
	stability.		
II	2.1.4 Potentiometric method of	1	
	determination of stability constants with		
	example of silver-ammonia complex. 2.2 Substitution Reactions in Octahedral		
	Complexes (5L)		

2.2.1 Introduction, types of reactions in complexes.
2.2.2 Ligand substitution reactions: basic mechanisms.
2.2.3 Inert and labile complexes and

	alastronic configurations and lability of	Γ
	electronic configurations and lability of	
	complexes.	
	2.2.4 Acid hydrolysis, base hydrolysis and	
	anation reactions.	
	2.3 Electronic Spectra (5L)	
	2.3.1 Types of electronic transitions like	
	intra –ligand transitions, charge transfer transitions and intra-metal transitions and	
	(<i>d</i> - <i>d</i> or ligand field transitions for	
	transition metals).	
	2.3.2 Rules for electronic transitions: Spin	
	and Orbital or Laporte selection rules.	
	Orgel Diagrams for D Terms (i.e, d^{I} , d^{A} and	
	$d^6 d^9$ electronic configurations) and its use	
	in interpretation of visible electronic	
	absorption spectra of these configurations.	
	Organometallic Chemistry (15L)	
	3.1 Organometallic Compounds of main	
	group metals (6L)	
	3.1.1 Introduction: General synthetic	
	methods: (i) Oxidative addition, (ii) Metal-	
	Metal exchange (Transmetallation), (iii)	
	Carbanion-Halide exchange, (iv) Metal	
	Hydrogen exchange and (v) Methylene	
	insertion reactions.	
	3.1.2 Chemical rections: (i) Reactions with	
	oxygen, (ii) Alkylation and arylation	
	reactions (iii) Reactions with protic	
	reagents and (iv) Complex formation	
III	reactions.	1
	3.2 Organometallic compounds of	
	transition metals (9L)	
	3.2.1 Synthesis, structure, reactions and of	
	ferrocene.	
	3.2.2 Bonding in ferrocene on the basis of	
	VBT.	
	3.2.3 Bonding in Re and Mo halide	
	complexes.	
	Some Selected Topics (15L)	
	4.1 Inorganic Polymers (3L)	
	4.1.1Various methods of classification with	
IV	examples.	
	4.1.2 Chemistry of borazine with reference	
	to preparation , properties, structures,	
	bonding and applications.	
	4.2 Characteristics and Treatment	
		1
		▲

	of Liquid Effluent (06L)		
	4.2.2 Characterization of waste:		
	biochemical oxygen demand (BOD),		
	chemical oxygen demand (COD), total		
	organic carbon (TOC), aerobic and		
	anaerobic processes.		
	4.2.3 Removing of solid		
	contaminants, physical and chemical		
	principles such as coagulation, flocculation		
	and sedimentation.		
	4.2.4 Primary, secondary and		
	tertiary of liquid effluents.		
	4.3 Nanomaterials(04L)		
	4.3.2 Introduction and importance		
	of nanomaterials.		
	4.3.3 Properties (Comparison		
	between bulk and nanomaterials): (i)		
	Optical properties, (ii) Electrical		
	conductivity, and (iii) Mechanical		
	properties.		
	4.3.4 Forms of nanomaterials:		
	nanofilms, nanolayers, nanotubes,		
	nanowires, and nanoparticles.		
	4.3.5 Chemical methods of		
	preparation: (i) Colloidal route, and (ii) Sol-		
	gel method.		
	4.5 Inorganic Pharmaceuticals (2L)		
	4.4.2 Gastrointestinal agents viz.,		
	(i) antacids (aluminium hydroxide, milk of		
	magnesia, sodium bicarbonate and (ii)		
	cathartics (magnesium sulphate and sodium		
	phosphate).		
	Topical agents viz., (i) protectives and		
	adsorbents (talc, calamine), (ii)		
	antimicrobial agents (potassium		
	permanganate, tincture iodine, boric acid)		
	and astringents (alum).		
	1.1 Spectroscopy (15L)		
	1.1.1 Introduction : Electromagnetic		
	spectrum, units of wavelength and		
	frequency.		
USCH603 I	1.1.2 UV- Visible Spectroscopy: Basic	2.5	1
	theory, solvents, nature of UV-VIS		
	theory, solvents, nature of UV-VIS		

		effect and chromophore-auxochrome		
		interactions.		
		1.1.3 IR Spectrocopy: Basic theory, nature		
		of IR spectrum, selection rule, fingerprint		
		region.		
		1.1.4 PMR Spectroscopy: Basic theory of		
		NMR, nature of PMR spectrum, chemical		
		shift (∂ unit), standard for PMR, solvents		
		used. Factors affecting chemical shift:		
		(1) inductive effect (2) anisotropic effect		
		(with reference to C=C, C=C, C=O and		
		benzene ring). Spin- spin coupling and		
		coupling constant. Proton exchange-		
		application of deuterium exchange		
		,Application of PMR in structure		
		determination.		
		1.1.5 Spectral characteristics of following		
		classes of organic compounds, including		
		benzene and monosubstituted benzenes,		
		with respect to UV-VIS, IR, PMR:		
		(1)alkanes (2)alkenes and polyenes (3)		
		alkynes (4) haloalkanes (5) alcohols		
		(6) carbonyl compounds (7) ethers (8)		
		carboxylic acids (9) esters (10)amines		
		(11) amides (broad regions characteristic of		
		different groups are expected).		
		1.1.6 Mass Spectrometry: Basic		
		theory.Nature of mass spectrum. General		
		rules of fragmentation. Importance of -		
		molecular ion peak, isotopic peaks,		
		basepeak, Nitrogen rule.Illustrative		
		fragmentation of alkanes and aliphatic		
		carbonyl compounds (No Mclafferty		
		rearrangement).		
		1.1.7 Problems of structure elucidation of		
		simple organic compounds using individual		
		or combined use of the above spectroscopic		
		technique are expected.(index of		
		hydrogen deficiency should be the first step		
		in solving the problems).		
ŀ		21 Dolymong (111)		
		2.1 Polymers (11L)		
		2.1.1 Introduction: General idea of		
		monomers, polymers, and polymerization,		
		natural and synthetic polymers.		
	II	Homoplymers and copolymers.		1
	11	Classification of polymers- Plastic, fibres,		T
		resins, elastomers. Thermoplastics and		
		thermosets. Copolymers-alternating, block,		
		random, graft.		
		2.1.2 Mechanism of free radical addition		
			1	L

Ι		
	polymerization.	
	2.1.3 Elastomers: Natural and synthetic	
	rubbers. Diene polymerization: 1,2- and	
	1,4- addition (cis and trans) polymerization	
	of isoprene. 1,3-Butadiene-styrene	
	copolymer.	
	2.1.4 Stereochemistry of polymers:	
	Tacticity. Role of Ziegler-Natta catalyst	
	(co- ordination polymerization) in directing	
	the tacticity in polypropylene (no	
	mechanism).	
	2.1.5 Preparation & use of polymers:	
	(1) Addition polymers: (a) polyethylene	
	(b)polypropylene (c) PVC (d) polystyrene	
	(e) polyacrylonitrile (f) polyvinylalcohol	
	(g) Teflon.	
	(2) Condensation Polymers: (a) Polyesters	
	(b) polyamides (c) polyurethans (d)phenol-	
	formaldehyde resin (e) epoxy resin (f)	
	polycarbonates.	
	2.1.6 Recyclable polymers. Biodegradable	
	polymers and their uses. Biomedical use of	
	polymers.	
	2.1.7 Additives to polymers: Plasticizers	
	,stabilizers and fillers.(The students are	
	expected to identify monomers in a given	
	polymer and draw the structure of a polymer	
	from a given set of monomers).	
	2.2 Photochemistry	
	2.2.1 Introduction: Difference between	
	thermal and photochemical reactions.	
	Jablonski diagram, singlet and triple states,	
	allowed and forbidden transitions, fate of	
	excited molecules, photosensitization. 2.2.2	
	Photochemical reactions of olefins:	
	photoisomerisation, photochemical	
	rearrangement of 1,4-dienes (di π methane)	
	2.2.3 Photochemistry of carbonyl	
	compounds: Norrish I, Norrish II cleavages,	
	Photo reduction (e.g. benzophenone to	
	benzpinacol).	
	3.1 Catalysts and Reagents (5L)	
	Study of the following catalysts and	
	reagents with respect to functional group	
	transformations and selectivity (no	
	mechanism).	
	1 Catalysts : Catalysts for hydrogenation:	
	Raney Ni,Pt and PtO ₂ : C=C, CN, NO ₂ ,	
	aromatic ring; Pd/C: C=C, COCl \rightarrow CHO	
	(Rosenmund); Lindlar catalyst: alkynes;	
	Wilkinson's catalyst for	

	compounds, cyanides and CO ₂ . 4.1.3 Organolithium Compounds : Preparation using alkyl/aryl halides. Reactions with compounds containing	
IV	 A.1.1 Intoduction: Carbon-Inetar bond- Nature, types reactivity. 4.1.2 Organo magnesium Compounds: Grignard reagent :Preparation, structure, and stability, Reaction with compounds containing acidic hydrogen, carbonyl 	1
	4.1 Organometallic Chemistry (5L) 4.1.1 Intoduction: Carbon-metal bond-	
	geraniol and nerol from citral. 3.2.5	
	Synthesis of camphor from α - pinene, α and β ionones,	
	3.2.4 Commercial importance of terpenoids and alkaloids:	
	nicotinic acid.	
	studies. Total synthesis of (i) Citral from 3-methylbutan-1-ol (ii) Nicotine from	
	citral and nicotine through degradation studies. Total synthesis of degradation	
	simple open chain and monocyclic amines.3.2.2.3 Structure determination of	
	monoterpenes. 3.2.2.2 Hofmann exhaustive methylation and degradation in alkaloids –	
	Examples of open chain and monocyclic	
	3.2.2 Structure determination of natural products: 3.2.2.1 Ozonolysis in terpenoids-	
	(d) Hormones: adrenaline, thyroxine.(e) Steroids: cholesterol, progesterone.	
	(b) Alkaloids: nicotine, atropine.(c) Vitamins: Vitamins A and C.	
	rule.α-terpeniol, citral, camphor, α-pinene.	
	compounds specified below are expected). (a) Terpene: Isoprene and special isoprene	
	natural products with respect to the sources and classes. (Structures of the	
	metabolites. Introduction to the following	
	3.2 Natural Products (10L) 3.2.1 Introduction: Primary and secondary	
	CO.	
	epoxidation of C=C. (6) NBS: allylic and benzylic bromination of position alpha to	
	CO.(5)mCPBA and R-OOH/H ₂ O ₂ for	
	hydroxylation of allylic and benzylic positions, oxidation of CH ₂ , alpha to CO to	
	NaBH4: reduction of CO (3) SeO ₂ :	
	reduction of CO,COOR, CN, NO ₂ . (2)	
	stereo selective reduction of olefins. 3.1.2 Reagents : (1)LiAlH4 and Red-Al:	

USCH604	I	Merrifields solid phase peptide synthesis (example of di- and tri- peptides for nomenclature and synthesis). Proteins: Sources, types,functions,colloidal nature, separation based on isoelectric point, denaturation and functions. Partial and total hydrolysis. General idea of primary, secondary, tertiary and quartenary structures. 4.2.3 Nucleic acids: Selective hydrolysis of nucleic acids.Sugars and bases in nucleic acids. Stuctures of nucleosides an nucleotides in DNA and RNA. Structure of nucleic acids (DNA and RNA): Base pairing in nucleic acids. Importance of nucleic acids-self duplication, protein synthesis.	2.5	1
		acidic hydrogen, alkyl halides, carbonyl compounds, cyanides and CO ₂ . Lithium dialkyl cuprates: Preparation and reactions with aliphatic /aromatic/vinylic halides. 4.1.4 Organozinc compounds : Preparation of dialkyl zinc. Reaction with water, acid chlorides and alkyl halides. Reformatsky reaction (with mechanism). 4.2 Chemistry of some Important Biomolecules: (10L) 4.2.1 α -Amino acids: Structure, configuration, Essential amino acids and their abbreviations, classification, Properties: pH dependency of ionic structure and isoelectric point. Methods of preparations: Strecker synthesis, amidomalonate synthesis, Erlenmeyer azalactone synthesis. 4.2.2 Polypeptides and Proteins: Polypeptides: Peptide bond. Nomenclature and representation of polypeptides.		

	and quantitative analysis calibration avera	
	and quantitative analysis, calibration curve and standard addition method, applications.	
	[Numerical problems expected]	
	1.2 Amperometric Titrations: Basic	
	principles, rotating platinum electrode and	
	nature of the titration curves, applications,	
	advantages and limitations.	
	Methods of separation-II (15L) 2.1 Gas chromatography (6L): Gas liquid	
	chromatography, basic principles retention	
	time, retention volume, resolution, peak	
	width theoretical plates. HETP,	
	instrumentation, columns, detectors,	
	applications.	
	2.2 High Performance Liquid	
	I Chromatography (4L): Instrumentation,	1
1	types of elution, U.V. and I.R. detector and	I
	applications	
	2.3 Ion Exchange Chromatography (5L):	
	Types of ion exchangers, mechanism of ion	
	exchange, selectivity coefficients and	
	separation factors, capacity and its	
	determination, factors affecting the	
	separation of ions, applications.	
	I I I I I I I I I I I I I I I I I I I	
	Treatment of analytical data-II and	
	Treatment of analytical data-II and Titrimetric analysis-II (15L)	
	Titrimetric analysis-II (15L)	
	Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L):	
	Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L): Distribution of random errors, Gaussian	
	Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L):	
	Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L): Distribution of random errors, Gaussian curve, students' t, confidence limits and	
	Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L): Distribution of random errors, Gaussian curve, students' t, confidence limits and confidence interval, criteria for rejection of	
	Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L): Distribution of random errors, Gaussian curve, students' t, confidence limits and confidence interval, criteria for rejection of result: 2.5d rule,4.0 rule and Q test, F teset,	
	Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L): Distribution of random errors, Gaussian curve, students' t, confidence limits and confidence interval, criteria for rejection of result: 2.5d rule,4.0 rule and Q test, F teset, testing for significance, null hypothesis,	
	Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L): Distribution of random errors, Gaussian curve, students' t, confidence limits and confidence interval, criteria for rejection of result: 2.5d rule,4.0 rule and Q test, F teset, testing for significance, null hypothesis, method of averages, least squares method.	
	Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L): Distribution of random errors, Gaussian curve, students' t, confidence limits and confidence interval, criteria for rejection of result: 2.5d rule,4.0 rule and Q test, F teset, testing for significance, null hypothesis, method of averages, least squares method. Numerical problems expected]	
I	 Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L): Distribution of random errors, Gaussian curve, students' t, confidence limits and confidence interval, criteria for rejection of result: 2.5d rule,4.0 rule and Q test, F teset, testing for significance, null hypothesis, method of averages, least squares method. Numerical problems expected] 3.2 Complexometric Titrations (5L): General introduction, EDTA titrations, advantages and limitations of EDTA as the 	1
I	 Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L): Distribution of random errors, Gaussian curve, students' t, confidence limits and confidence interval, criteria for rejection of result: 2.5d rule,4.0 rule and Q test, F teset, testing for significance, null hypothesis, method of averages, least squares method. Numerical problems expected] 3.2 Complexometric Titrations (5L): General introduction, EDTA titrations, advantages and limitations of EDTA as the titrant, absolute and conditional formation 	1
Ι	 Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L): Distribution of random errors, Gaussian curve, students' t, confidence limits and confidence interval, criteria for rejection of result: 2.5d rule,4.0 rule and Q test, F teset, testing for significance, null hypothesis, method of averages, least squares method. Numerical problems expected] 3.2 Complexometric Titrations (5L): General introduction, EDTA titrations, advantages and limitations of EDTA as the titrant, absolute and conditional formation constants of metal EDTA complexes, 	1
I	 Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L): Distribution of random errors, Gaussian curve, students' t, confidence limits and confidence interval, criteria for rejection of result: 2.5d rule,4.0 rule and Q test, F teset, testing for significance, null hypothesis, method of averages, least squares method. Numerical problems expected] 3.2 Complexometric Titrations (5L): General introduction, EDTA titrations, advantages and limitations of EDTA as the titrant, absolute and conditional formation constants of metal EDTA complexes, construction of titration curves, types of 	1
I	 Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L): Distribution of random errors, Gaussian curve, students' t, confidence limits and confidence interval, criteria for rejection of result: 2.5d rule,4.0 rule and Q test, F teset, testing for significance, null hypothesis, method of averages, least squares method. Numerical problems expected] 3.2 Complexometric Titrations (5L): General introduction, EDTA titrations, advantages and limitations of EDTA as the titrant, absolute and conditional formation constants of metal EDTA complexes, construction of titration curves, types of EDTA titrations, methods of increasing the 	1
I	 Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L): Distribution of random errors, Gaussian curve, students' t, confidence limits and confidence interval, criteria for rejection of result: 2.5d rule,4.0 rule and Q test, F teset, testing for significance, null hypothesis, method of averages, least squares method. Numerical problems expected] 3.2 Complexometric Titrations (5L): General introduction, EDTA titrations, advantages and limitations of EDTA as the titrant, absolute and conditional formation constants of metal EDTA complexes, construction of titration curves, types of EDTA titrations, methods of increasing the selectivity of EDTA as a titrant, 	1
I	 Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L): Distribution of random errors, Gaussian curve, students' t, confidence limits and confidence interval, criteria for rejection of result: 2.5d rule,4.0 rule and Q test, F teset, testing for significance, null hypothesis, method of averages, least squares method. Numerical problems expected] 3.2 Complexometric Titrations (5L): General introduction, EDTA titrations, advantages and limitations of EDTA as the titrant, absolute and conditional formation constants of metal EDTA complexes, construction of titration curves, types of EDTA titrations,methods of increasing the selectivity of EDTA as a titrant, metallochromic indicators, theory and 	1
Ι	 Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L): Distribution of random errors, Gaussian curve, students' t, confidence limits and confidence interval, criteria for rejection of result: 2.5d rule,4.0 rule and Q test, F teset, testing for significance, null hypothesis, method of averages, least squares method. Numerical problems expected] 3.2 Complexometric Titrations (5L): General introduction, EDTA titrations, advantages and limitations of EDTA as the titrant, absolute and conditional formation constants of metal EDTA complexes, construction of titration curves, types of EDTA titrations,methods of increasing the selectivity of EDTA as a titrant, metallochromic indicators, theory and applications. 	1
I	 Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L): Distribution of random errors, Gaussian curve, students' t, confidence limits and confidence interval, criteria for rejection of result: 2.5d rule,4.0 rule and Q test, F teset, testing for significance, null hypothesis, method of averages, least squares method. Numerical problems expected] 3.2 Complexometric Titrations (5L): General introduction, EDTA titrations, advantages and limitations of EDTA as the titrant, absolute and conditional formation constants of metal EDTA complexes, construction of titration curves, types of EDTA titrations,methods of increasing the selectivity of EDTA as a titrant, metallochromic indicators, theory and applications. 3.3 Redox Titrations (4L): General 	1
I	 Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L): Distribution of random errors, Gaussian curve, students' t, confidence limits and confidence interval, criteria for rejection of result: 2.5d rule,4.0 rule and Q test, F teset, testing for significance, null hypothesis, method of averages, least squares method. Numerical problems expected] 3.2 Complexometric Titrations (5L): General introduction, EDTA titrations, advantages and limitations of EDTA as the titrant, absolute and conditional formation constants of metal EDTA complexes, construction of titration curves, types of EDTA titrations,methods of increasing the selectivity of EDTA as a titrant, metallochromic indicators, theory and applications. 3.3 Redox Titrations (4L): General introduction, theory of redox indicators, 	1
I	 Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L): Distribution of random errors, Gaussian curve, students' t, confidence limits and confidence interval, criteria for rejection of result: 2.5d rule,4.0 rule and Q test, F teset, testing for significance, null hypothesis, method of averages, least squares method. Numerical problems expected] 3.2 Complexometric Titrations (5L): General introduction, EDTA titrations, advantages and limitations of EDTA as the titrant, absolute and conditional formation constants of metal EDTA complexes, construction of titration curves, types of EDTA titrations,methods of increasing the selectivity of EDTA as a titrant, metallochromic indicators, theory and applications. 3.3 Redox Titrations (4L): General introduction, theory of redox indicators, criterion for choosing an indicator for a 	1
I	 Titrimetric analysis-II (15L) 3.1 Treatment of Analytical Data (6L): Distribution of random errors, Gaussian curve, students' t, confidence limits and confidence interval, criteria for rejection of result: 2.5d rule,4.0 rule and Q test, F teset, testing for significance, null hypothesis, method of averages, least squares method. Numerical problems expected] 3.2 Complexometric Titrations (5L): General introduction, EDTA titrations, advantages and limitations of EDTA as the titrant, absolute and conditional formation constants of metal EDTA complexes, construction of titration curves, types of EDTA titrations,methods of increasing the selectivity of EDTA as a titrant, metallochromic indicators, theory and applications. 3.3 Redox Titrations (4L): General introduction, theory of redox indicators, 	1

	(2) Fe (II) Vs. dichromate, use of diphenyl amine and ferroin as redox indicators.	
IV	 Concepts in Quality and miscellaneous methods (15L) 4.1 Total quality management (5L) : concept of quality, quality control, quality assurance total quality management, ISO series, Good laboratory practices 4.2 Mass Spectrometry (2L): Basic principles, introduction of components only 4.3 Thermal Methods (5L): Classification of thermal methods, thermogravimetric analysis, basic principles, instrumentation factors affecting the TG curve, applications 4.4 Introduction to Radio Analytical Techniques (3L): Classification of the techniques, introduction to neutron activation analysis and its applications. 	1

	Practicals		
	Practicals of Course USCH601		
	Physical Practicals		
	Chemical Kinetics –		
	To determine the energy of activation for the		
	acid catalysed hydrolysis of methyl acetate.		
	Partition coefficient		
	To determine the equilibrium constant for the		
	reactionKI + I_2 KI ₃ by partition method.		
	(Partion coefficient of I ₂ between CCl4 and		
	water is to be given)		
USCHP07 I	otentiometry –	3	8
	1. To determine the strength of the given		
	strong acid (HCl) by potentiometric		
	titration using quinhydrone electrode		
	(Calculation of pH from Ecell and the		
	plot of (a) 🚝 against V		
	(b) pH against V graphs are expected).		
	OR		
	To determine pKa value of the given		
	weak monobasic acid (CH ₃ COOH)		
	by e.m.f. measurements.		
	2. To determine E_{cal} at room temperature		

	and using this value, determine standard reduction potential of Ag/Ag ⁺ electrode at room temperature. Conductometry – To determine the amount of dibasic acid (Oxalic acid) by conductometric titration against strong base. OR To determine the relative strength of monochloroacetic acid and acetic acid conductometrically. Course USCH602 <u>Inorganic Preparations</u> 1. Mercury tetrathiocyanato Cobaltate Hg[Co(SCN)4] 2. Magnesium oxinate[Mg(Ox)2] 3. Tris-acetyl acetonato iron(III) [Fe(AcAc)3] 4. Tetrammine copper(II) sulphate. [Cu(NH3)4]SO4.H2O Inorganic estimations/ Analysis 1. Estimation of copper iodometrically using sodium thiosulphate. (Students are expected to standardize supplied sodium thiosulphate solution using potassium dichromate) 2. Estimation of lead by complexomety using EDTA solution. (Students are expected to standardize the supplied EDTA solution. Suggested standard for standardization: ZnSO4.7H ₂ O)	(II)	
USCHP08	Practicals of Course USCH603 Organic Practicals Binary Mixture Separation Seperation of mixture containing (VL + NVL) & (S + VL) components. Organic Preparations 1. Aniline/p-toluidine → N-Acetyl derivative 2. Salicylic acid/nitrobenzene/ Acetanilide → Nitro derivative	3	8

3.	$β$ - naphthol \rightarrow Methyl Ether derivative (Using dimethyl sulphate)	
4.	Acetanilide \rightarrow p-bromoacetanilide derivative	
5.	Aniline/ p-toluidine \rightarrow Schiff base with benzaldehyde	
6.	Hydroquinone/beta naphthol \rightarrow Acetyl derivative	
7.	Methyl salicylate/ethyl benzoate → Acid derivative (Hydrolysis)	
8.	Benzaldehyde/p-nitrobenzaldehyde \rightarrow Acid (Oxidation)	
<u>Analy</u>	tical Practicals	
1.	Determination of chemical oxygen	
	demand of a water sample.	
2.	Determination of percentage purity of	
	a sample of common salt using a cation exchanger.	
3.	a commercial salt sample by flame	
4	· ·	
4.		
5		
0.		
	•	
	1	
	4. 5. 6. 7. 8. Cours <u>Analy</u> 1. 2. 3. 4.	 4. Acetanilide → p-bromoacetanilide derivative 5. Aniline/ p-toluidine → Schiff base with benzaldehyde 6. Hydroquinone/beta naphthol → Acetyl derivative 7. Methyl salicylate/ethyl benzoate → Acid derivative (Hydrolysis) 8. Benzaldehyde/p-nitrobenzaldehyde → Acid (Oxidation) Course USCH604 Analytical Practicals 1. Determination of chemical oxygen demand of a water sample. 2. Determination of percentage purity of a sample of common salt using a cation exchanger. 3. Determination of potassium content of

Reference List for Paper-I (Physical Chemistry)

- 1. Physical Chemistry, Ira Levine, 5th Edition, 2002 Tata McGraw Hill Publishing Co.Ltd.
- 2. Physical Chemistry, P.C. Rakshit, 6th Edition, 2001, Sarat Book Distributors, Kolkota.
- 3. Physical Chemistry, R.J. Silbey, & R.A. Alberty, 3rd edition , John Wiley & Sons, Inc [part 1]
- 4. Physical Chemistry, G. Castellan, 3rd edition, 5th Reprint, 1995 Narosa Publishing House.
- 5. Modern Electrochemistry, J.O.M Bockris & A.K.N. Reddy, Maria Gamboa – Aldeco 2nd Edition, 1st Indian reprint,2006 Springer
- Visible & U.V. Spectroscopy, Analytical Chemsitry by Open Learning
 R. Demny and R. Sinclair M 1991 John Wiley & Sons
- Classical Methods , Vol 1 Analytical Chemistry by Open Learning D. Cooper & C. Devan, 1991 John Wiley & Sons
- 8. Physical Chemistry, G.M. Barrow, 6th Edition, Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 9. The Elements of Physical Chemistry, P.W. Atkins, 2nd Edition, Oxford Universitty Press Oxford
- 10.Physical Chemistry, G.K. Vemullapallie, 1997, Prentice Hall of India, Pvt.Ltd. New Delhi.

References for Paper-II.(Inorganic Chemistry).

- 1. D. Banerjea, *Coordination chemistry*, Tata McGraw Hill, New Delhi, (1993).
- 2. D. F. Shriver and P. W. Atkins, *Inorganic chemistry*, 3rd Ed., Oxford University Press, (1999).
- 3. K. F. Purcell and J. C. Kotz, *Inorganic chemistry*, Saunders, Hongkong, (1977).
- 4. N. N. Greenwood and E. Earnshaw, *Chemistry of elements*, Pergamon Press, Singapore, (1989).
- 5. W. L. Jolly, *Modern inorganic chemistry*, 2nd Ed. McGraw Hill Book Co., (1991).
- 6. B. E. Douglas and H. McDaniel, *Concepts and models in inorganic chemistry*, 3rd Ed., John Wiley & Sons, Inc., New York, (1994).
- 7. G. N. Mukherjee and A. Das, *Elements of bioinorganic chemistry*, Dhuri and Sons, Calcutta, (1988).
- 8. R. W. Hay, Bioinorganic chemistry, Ellis Harwood, England, (1984).

- 9. R. C. Mehrotra and A. Singh, Organometallic chemistry: A unified approach, Wiley Eastern, New Delhi, (1991).
- For synthesis of iron ethylenediamine sulphate refer Practical Inorganic Chemistry by G. Marr and B. W. Rockett, Van Nostrand Reinhold Company London1972. P 34.
- 11.For preparation of CuCl₂.2DMSO Refer Microscale Inorganic Chemistry by Z. Szafran, Ronald M. Pike and Mono M. Singh. Pub. John Wiley and Sons1991.p.218.

References For Paper-III (Organic Chemistry)

- 1. Organic Chemistry, Francis A Carey, Pearson Education, 6th Edition, Special Indian Edition 2008
- 2. Organic Chemistry, R.T. Morrison and R.N. Boyd, 6th Edition, Pearson Edition
- 3. Organic Chemistry, T.W.G. Solomon and C.B. Fryhle, 8th Edition, John Wiley & Sons, 2004
- 4. A guide to mechanism in Organic Chemistry, 6th Edition, Peter Sykes, Pearson Education
- 5. Fundamentals of Organic Chemistry , G. Marc Loudon, 4th Edition Oxford
- 6. Organic Chemistry, L.G. Wade Jr and M.S. Singh, 6th Edition, 2008
- 7. Organic Chemistry Baula Y. Bruice, Pearson Edition, 2008
- 8. Organic Chemistry, J.G. Smith, 2nd Editionm Special Indian Edition, Tata McGraw Hill
- 9. Organic Chemistry, S.H. Pine, McGraw Hill Kogakusha Ltd.
- 10.Stereochemistry, P.S. Kalsi, New Age International Ltd. 4th Edition, 2006

Reference List for Paper-IV (Analytical Chemistry)

- 1. D. Harvey, Modern Analytical Chemistry, The McGraw-Hill Pub. 1st Edition (2000)
- 2. H.S. Ray, R Sridhar and K.P. Abraham, Extraction of Nonferrous Metals, AffiliatedEast-West Press Pvt. Ltd. New Delhi (1985) reprint 2007.
- 3. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, Vogel's Textbook of Qunatitative Chemical Analysis, Fifth edition, ELBS Publication (1996)
- 4. D.A. Skoog D.M. West and F.J. Holler, Fundametals of Analytical Chemistry, 7thEdition (printed in India in 2001) ISBN Publication.
- 5. Analytical Chemistry, J.G. Dick, 1973 Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 6. Quantitative analysis, Dey & Underwood, Prentice Hall of India, Pvt. Ltd.

New Delhi

7. Fundamentals of Analytical Chemistry, Skoog etal 8th edition, Saunders college publishing.

UNIVERSITY OF MUMBAI

No. UG/730f 2018-19

CIRCULAR:-

Attention of the Principals of the affiliated Colleges and Directors of the recognized Institutions in Science & Technology Faculty is invited to this office Circular Nos. UG/156 of 2016-17, dated 16th November, 2016 relating to syllabus of the Bachelor of Science (B.Sc.) degree course.

They are hereby informed that the recommendations made by the Board of Studies in Chemistry at its meeting held on 28th May, 2018 have been accepted by the Academic Council at its meeting held on 14th June, 2018 <u>vide</u> item No. 4.41 and that in accordance therewith, the revised syllabus as per the (CBCS) for the Chemistry of T.Y.B.Sc. Physical Chemistry, Inorganic Chemistry, Organic Chemistry and Analytical Chemistry (Sem - V & VI) (3 and 6 Units) including Applied Component Drugs and Dyes, Heavy Fine Chemicals and Petrochemicals has been brought into force with effect from the academic year 2018-19, accordingly. (The same is available on the University's website <u>www.mu.ac.in</u>).

ullan

(Dr. Dinesh Kamble) I/c REGISTRAR

MUMBAI - 400 032 6th June, 2018 To July

The Principals of the affiliated Colleges & Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9th January, 2018.)

A.C./4.41/14/06/2018

No. UG/ 73-A of 2018

MUMBAI-400 032

th June, 2018 July

Copy forwarded with Compliments for information to:-

- 1) The I/c Dean, Faculty of Science & Technology,
- 2) The Chairman, Board of Studies in Chemistry,
- 3) The Director, Board of Examinations and Evaluation,
- 4) The Director, Board of Students Development,
- 5) The Co-Ordinator, University Computerization Centre,

unden

(Dr. Dinesh Kamble) I/c REGISTRAR

T Y B Sc Chemistry

Applied Component

SEMESTER V

(Drugs and Dyes)

COURSE CODE: USACDD501

CREDITS: 02

LECTURES: 60

Unit			Topics	
Ι	1.1		General Introduction to Drugs	(8L)
		1.1.1	Definition of a drug, sources of drugs, requirements of an ideal drug,	
			classification of drugs (based on therapeutic action),	
		1.1.2	Nomenclature of drugs: Generic name, Brand name, Systematic name	
		1.1.3	Definition of the following medicinal terms: Pharmacon,	
			Pharmacology, Pharmacophore, Prodrug, Half – life efficiency, LD_{50} , ED_{50} , GI_{50} Therapeutic Index.	
		1.1.4	Brief idea of the following terms: Receptors, Agonists, Antagonists,	
			Drug-receptor interaction, Drug Potency, Bioavailability, Drug	
			toxicity, Drug addiction, Spurious Drugs, Misbranded Drugs,	
			Adulterated Drugs, Pharmacopoeia.	
	1.2		Routes of Drug Administration and Dosage Forms	(3L)
		1.2.1	Oral and Parenteral routes with advantages and disadvantages.	
		1.2.2	Formulations & combination formulation, Different dosage forms (including Patches & Adhesives, emphasis on sustained release formulations and enteric coated tablets).	
	1.3		Pharmacodynamic agents: A brief introduction of the following pharmacodynamic agents and the study with respect to their chemical structure, chemical class, therapeutic uses, and side effects.	
		1.3.1	 CNS Drugs: Classification based on pharmacological actions: CNS Depressants & CNS Stimulants. Concept of sedation and hypnosis, anaesthesia. Phenytoin (Hydantoin) Trimethadione (Oxazolidinediones) (Synthesis from acetone) Alprazolam (Benzodiazepines) Levetiracetam (Pyrrolidines) Amphetamine (Phenethylamine) (Asymmetric synthesis from phenyl acetic acid) Chlorpromazine (Phenothiazines) 	(4L)

UNIT-II (Drugs)

2	2.1		Analgesics, Antipyretics and Anti-inflammatory Drugs.	(4L)
		2.1.1	Analgesics and Antipyretics	

	Morphine (Phenanthrene alkaloids)
	• Tramadol (Cyclohexanols) (Synthesis from salicylic acid)
	• Aspirin (Salicylates)
	Paracetamol (p-Amino phenols)

	2.1.2	 Anti-inflammatory Drugs Mechanism of inflammation and various inflammatory conditions. Steroids: Prednisolone, Betamethasone Sodium Diclofenac, Aceclofenac (N- Aryl anthranilic acids) (Synthesis from 2,6-dichlorodiphenyl amine) 	
2.2		Antihistaminic Drugs	(2L
		 Diphenhydramine (Ethanol amines) Cetrizene (Piperazine) (Synthesis from 4- Chlorobenzhydryl chloride) Chlorpheniramine maleate (Ethyl amines) Pantoprazole (Benzimidazoles))
2.3		Cardiovascular drugs	(3L
		 Classification based on pharmacological action Isosorbide dinitrate (Nitrates) Valsartan (Amino acids) (structure not expected) Atenolol (Aryloxy propanol amines) (Synthesis from 3-Hydroxy phenyl acetamide) Amlodipine (Pyridines) Frusemide /Furosemide (Sulfamoyl benzoic acid) Rosuvastatin (Pyrimidine) 	
2.4		Antidiabetic Agents	(2L
		 General idea and types of diabetes; Insulin therapy Glibenclamide (Sulphonyl ureas) Metformin (Biguanides) Dapagliflozin (Pyranose) Pioglitazone (Thiazolidinediones) (Synthesis from 2-(5-ethylpyridin-2-yl) ethanol))
2.5		Antiparkinsonism Drugs	(2L
		 Idea of Parkinson's disease. Procyclidine hydrochloride (Pyrrolidines) Ethopropazine hydrochloride (Phenothiiazines) Levodopa (Amino acids) (Synthesis from Vanillin) 	
2.6		Drugs for Respiratory System General idea of: Expectorants; Mucolytes; Bronchodilators; Decongestants; Antitussives	(2L)

• Ambroxol (Cyclohexanol) (Synthesis from paracetamol)	
 Salbutamol (Phenyl ethyl amines) 	
Oxymetazoline (Imidazolines)	
Codeine Phosphate (Opiates)	

Reference Books: (For units I & II)

- 1. Foye's principles of medicinal chemistry. 6th Edition, Edited by Davis William & Thomas Lemke, Indian edition by B I Publication Pvt Ltd, Lippmcolt Williams & Wilkins.
- 2. Text book of organic medicinal & pharmaceutical chemistry. Wilson & Gisovolds, 11th Edition by John H Block, John M Beale Jr.
- 3. Medicinal chemistry. Ashutosh Kar, New Age International Pvt. Ltd Publisher. 4th edition.
- 4. Burger's Medicinal Chemistry, Drug Discovery and Development. Abraham and Rotella. Wiley
- 5. Medicinal chemistry. Ashutosh Kar, New Age International Pvt. Ltd Publisher. 4th edition.
- 6. Medicinal chemistry. V.K. Ahluwalia and Madhu Chopra, CRC Press.
- 7. Principle of medicinal chemistry. Vol 1 & 2 S. S. Kadam, K. R. Mahadik, K. G. Bothara
- 8. The Art of Drug synthesis. Johnson and Li. Wiley, 2007.
- 9. The organic chemistry of drug design & drug action. 2nd ed. By Richard B Silvermann, Academic Press.
- 10. The Organic Chemistry of Drug Synthesis. Lednicer and Mitsher, Wliey.

<u>Unit III (Dyes)</u>

3	3.1		Introduction to the dye-stuff Industry	(5L)
		3.1.1	Dyes	
			Definition of dyes, requirements of a good dye i.e. Colour, Chromophore and Auxochrome, Solubility, Linearity, Coplanarity, Fastness, Substantivity, Economic viability.	
			Definition of fastness and its properties and Mordants with examples	
			Explanation of nomenclature or abbreviations of commercial dyes with at least one example suffixes – G, O, R, B, K, L, C, S H, 6B, GK, 6GK,	
			Naming of dyes by colour index (two examples) used in dye industries.	
		3.1.2	Natural and Synthetic Dyes	
			Natural Dyes: Definition and limitations of natural dyes. Examples and uses of natural dyes w.r.t Heena, Turmeric, Saffron, Indigo, Madder, Chlorophyll –names of the chief dyeing material/s in each natural dye [structures not expected],	
			Synthetic dyes: Definition of synthetic dyes, primaries and intermediates. Important milestones in the development of synthetic dyes – Emphasis on Name of the Scientist, dyes and the year of the discovery is required. (structure is not expected)	
	- 2.2			
	3.2	3.2.1	Substrates for Dyes : Types of fibresNatural: cellulosic and proteinaceous fibres, examples – wool, silk andcotton structures and names of dyes applied on each of them.	(3L)
		3.2.2	Semi – synthetic: definition and examples [structures not expected]	
		3.2.3	Synthetic: Nylon, Polyesters and Polyamides structures and names of dyes applied on each of them	
		3.2.4	Blended fabrics: definition and examples [structures not expected]	
		3.2.5	Binding forces of dyes on substrate: ionic forces, covalent linkages, hydrogen bonding, vander-walls forces	
	3.3		Classification of dyes based on applications and dyeing methods	(7L)
		3.3.1	Dyeing methods	
			Basic Operations involved in dyeing process:i. Preparation of fibresii. Preparation of dyesiv. Finishing	
			Dyeing Method of Cotton Fibres:	
			(i) Direct dyeing (ii) Vat dyeing	
			(iii) Mordant dyeing (iv) Disperse dyeing	

3.3.2	Classification of dyes based on applicability on substrates (examples with structures) (a) Acid Dyes- Orange II, (b) Basic Dyes-methyl violet, (c) Direct cotton Dyes- Benzofast Yellow 5GL (d) Azoic Dyes – Diazo components; Fast yellow G, Fast orange R. Coupling components. Naphthol AS, Naphthol ASG (e) Mordant Dyes-Eriochrome Black A, Alizarin. (f) Vat Dyes- Indanthrene brown RRD, (g) Sulphur Dyes- Sulphur Black T (no structure) (h) Disperse Dyes-Celliton Fast brown 3R, (i) Reactive Dyes- Cibacron Brilliant Red B,	
3.3.3	Optical Brighteners: General idea, important characteristics of optical brighteners and their classes [Stilbene, Coumarin, Heterocyclic vinylene derivatives, Diaryl pyrazolines, Naphthylamide derivatives] general structure of each class.	

<u>Unit – IV (Dyes)</u>

4	4.1		Colour and Chemical Constitution of Dyes	(4L)
		4.1.1	Absorption of visible light, Colour of wavelength absorbed, Complementary colour.	
		4.1.2	Relation between colour and chemical constitution.	
			 (i) Armstrong theory (quinonoid theory) and its limitations. (ii) Witt's Theory: Chromophore, Auxochrome, Bathochromic & Hypsochromic Shift, Hypochromic & Hyperchromic effect (iii) Valence Bond theory, comparative study and relation of colour in the following classes of compounds/dyes: Benzene, Nitrobenzene, Nitrobenzene, Nitrophenols, Benzoquinones, Azo, Triphenyl methane, Anthraquinones. (iv) Molecular Orbital Theory. 	
	4.2		Unit process and Dye Intermediates	
		4.2.1	A brief idea of Unit Processes	(3L)
			Introduction to primaries and intermediates	
			Unit processes: definition and brief ideas of below unit processes:(a) Nitration(b) Sulphonation(c) Halogenation(d) Diazotization:(3 different methods & its importance)(e) Ammonolysis(f) OxidationNB: Definition, Reagents, Examples of each unit processes mentioned above with reaction conditions (mechanism is not expected)	

	Benzene derivatives: Benzenesulphonic acid; 1,3-Benzenedisulphonic	,
	acid; sulphanilic acid; o-, m-, p-chloronitrobenzenes;	
	o-, m-, p-nitroanilines; o-, m-, p-phenylene diamines; Naphthol ASG	
	Naphthalene Derivative: Schaeffer acid; Tobias acid; Naphthionic acid;	
	N.W. acid; cleve-6-acid; H-acid; Naphthol AS	
	Anthracene Derivative: 1-Nitroanthraquinone; 1-Aminoanthraquinone	
	Anthraquinone-2-sulphonic acid; Benzanthrone.	

References (For Units III & IV):

- 1. Chemistry of Synthetic Dyes, Vol I VIII, Venkatraman K., Academic Press 1972
- 2. The Chemistry of Synthetic Dyes and Pigments, Lubs H.A., Robert E Krieger Publishing Company, NY ,1995
- 3. Chemistry of Dyes and Principles of Dyeing, Shenai V.A., Sevak Publications, 1973

I] Practicals

SEMESTER V

(Drugs and Dyes)

COURSE CODE: USACDD5P1

CREDITS: 02

- 1. Estimation of Ibuprofen (back titration method)
- 2. Estimation of Acid neutralizing capacity of a drug
- 3. Preparation of Aspirin from salicylic acid.
- 4. Separation of components of natural pigments by paper chromatography (eg: chlorophyll)

II] Project: Preparation of Orange II dye (semi-microscale1.0gms) and its use for dyeing different fabrics

SEMESTER VI

(Drugs and Dyes)

COURSE CODE: USACDD601

CREDITS: 02

LECTURES: 60

UNIT – I (Drugs)

1	1.1		Drug Discovery, Design and Development	(6L)
		1.1.	Discovery of a Lead compound: Screening, drug metabolism studies	
		1 1.1. 2	and clinical observation, Lipinski's rule of 5 Medicinal properties of compounds from Natural Sources: Anti- infective and anticancer properties of Turmeric (Curcumin)	
		1.1. 3	Development of drug: The Pharmacophore identification, modification of structure or functional group, Structure activity relationship (Sulphonamides).	
		1.1. 4	Structure modification to increase potency: Homologation, Chain branching and Extension of the structure.	
		1.1. 5	Computer assisted drug design.	
	1.2		Drug Metabolism: Introduction, Absorption, Distribution, Bio- transformation, Excretion Different types of chemical transformation of drugs with specific examples.	(3L)
	1.3		Chemotherapeutic Agents: Study of the following chemotherapeutic agents with respect to their chemical structure, chemical class, therapeutic uses, side effects and introduction to MDR wherever applicable.	
		1.3.	 Antibiotics and antivirals: Definition, Amoxicillin (β- lactum antibiotics) Cefpodoxime (Cephalosporins) Doxycycline (Tetracyclines) Levofloxacin (Quinolones) (Synthesis from 2,3,4 – Trifluro -1- nitrobenzene) Aciclovir/Acyclovir (Purines) 	(2L)
		5.3. 2	 Antimalarials: Types of malaria; Symptoms; Pathological detection during window period (Life cycle of the parasites not to be discussed) Chloroquine (3-Amino quinolones) Artemether(Benzodioxepins) Following combination to be discussed:Atremether-Lumefantrine (no structure) 	(2L)

1.3.	Anthelmintics and AntiFungal agents	(2L)
3	Drugs effective in the treatment of Nematodes and Cestodes	
	infestations.	
	• Diethyl carbamazine (Piperazines)	
	• Albendazole (Benzimidazoles) (Synthesis from 2-	
	Nitroaniline)	
	Clotrimazole (Imidazole)	
	• Fluconazole (Triazole) (Synthesis from 1- Bromo – 2,4-	
	difluorobenzene)	

UNIT – II(Drugs) Chemotherapeutic Agents continued.

2	2.1	 Antiamoebic Drugs Types of Amoebiasis Metronidazole, Ornidazole, Tinidazole (Imidazole) Synthesis of Metronidazole from glyoxal by Debus-Radziszewski imidazole synthesis route Following combination therapy to be discussed: Ciprofloxacin-Tinidazole 	(1L)
	2.2	 Antitubercular and Antileprotic Drugs Types of Tuberculosis; Symptoms and diagnosis of Tuberculosis. Types of Leprosy. General idea of Antibiotics used in their treatment. PAS (Amino salicylates) Isoniazide (Hydrazides) Pyrazinamide (Pyrazines) (+) Ethambutol (Aliphatic diamines) (Synthesis from 1- Nitropropane) Dapsone(Sulphonamides) (Synthesis from 4- Chloronitrobenzene) Clofazimine (Phenazines) Bedaquiline (Quinoline) Following combination therapy to be discussed: (i) Rifampin + Ethambutol + Pyrazinamide (ii) Rifampin + Isoniazide + Pyrazinamide 	(3L)
	2.3	 Anti-Neoplastic Drugs Idea of malignancy; Causes of cancer Brief idea of Immuno Stimulants &Immuno depressants Lomoustine (Nitrosoureas) Anastrozole(Triazoles) (Synthesis from 3,5-bis (bromo methyl) toluene) Cisplatin (Chloro Platinum) Vincristine, Vinblastine, Vindesine) (Vinca alkaloids) (structure not expected) 	(2L)
	2.4	Anti-HIV Drugs Idea of HIV pathogenicity, Symptoms of AIDS • AZT/Zidovudine, Lamivudine,DDI (Purines)	(1L)
	2.5	Drug Intermediates: Synthesis and uses 1. 2,3,6-Triamino-6- hydroxypyrimidine from Guanidine	(2L)

	 2. p-[2'-(5-Chloro-2-methoxy benzamido) ethyl]- benzenesulphonamide from Methyl-5-chloro-2- methoxybenzene 3. 3-(p-Chlorophenyl)-3- hydroxypiperidine from 3- Chloroacetophenone 4. p-Acetyl amino benzenesulphonyl chloride from Aniline 5. Epichlorohydrine from propene 	
2.6	 Nano particles in Medicinal Chemistry Introduction; Carbon nano particles (structures) and Carbon nano tubes: Functionalization for Pharmaceutical applications Targeted drug delivery In vaccine (Foot and mouth disease) Use in Bio-physical treatment. Gold nano particles in treatment of: Cancer; Parkinsonism; Alzheimer. Silver nano particles: Antimicrobial activity. 	(4L)
2.7	 Drugs and Environmental Aspects Impact of Pharma-industry on environment, International regulation for human experimentation with reference to: "The Nuremberg Code" and "The Helsinki Declaration". 	(2L)

Reference Books (For Units I & II):

- 1. Foye's principles of medicinal chemistry. 6th Edition, Edited by Davis William & Thomas Lemke, Indian edition by B I Publication Pvt Ltd, Lippmcolt Williams & Wilkins.
- 2. Text book of organic medicinal & pharmaceutical chemistry. Wilson & Gisovolds, 11th Edition by John H Block, John M Beale Jr.
- 3. Medicinal chemistry. Ashutosh Kar, New Age International Pvt. Ltd Publisher. 4th edition.
- 4. Burger's Medicinal Chemistry, Drug Discovery & Development. Abraham & Rotella. Wiley
- 5. Medicinal chemistry. Ashutosh Kar, New Age International Pvt. Ltd Publisher. 4th edition.
- 6. Medicinal chemistry. V.K. Ahluwalia and Madhu Chopra, CRC Press.
- 7. Principle of medicinal chemistry. Vol 1 & 2 S. S. Kadam, K. R. Mahadik, K. G. Bothara
- 8. The Art of Drug synthesis. Johnson and Li. Wiley, 2007.
- 9. The organic chemistry of drug design & drug action. 2nd ed. By Richard B Silvermann, Academic Press.
- 10. The Organic Chemistry of Drug Synthesis. Lednicer and Mitsher, Wliey.
- 11. Text book of drug design and discovery. Povl-Krog-Sgaard-Larsen, Tommy Liljefors and ULF Madsen, 3rd Edition Taylor & Francis.
- 12. Bio-applications of nanoparticles. Edited by Warren C.W. Chan, Springer Publication.
- 13. Nanoparticle and technology for drug delivery (Drugs and pharmaceutical sciences). Ram B.Gupta& Uday B.Kompella Pub. Informa Healthcare.
- 14. Nano forms of carbon and its applications. Edited by Maheshwar Sharon and Madhuri Sharon.MonadNanotechPvt. Ltd.
- 15. Environmental Chemistry. A. K. De
- 16. Text Book on Law and Medicine. Chokhani and Ghormade. 2nd Edition. Hind Law House, Pune.

17. Essentials of Medical Pharmacology. K D Tripathi, Jaypee Brothers Medical publishers Pvt. ltd. Practical organic chemistry, Vogel.

SEMESTER VI

<u>Unit – III (Dyes)</u>

2	21		Chariffordian of Deve based on Charited Constitution and	(101
3	3.1		Classification of Dyes based on Chemical Constitution and	(12L
			Synthesis of Selected Dyes (Synthesis of the dyes marked with * is)
			expected)	
			i)Nitro Dye: Naphthol Yellow S	
			ii) Nitroso Dye: Gambine Y	
			iii)Azo dyes:	
			a) Monoazo dyes: Orange IV *(from sulphanilic acid) & Eriochrome	
			Black T* (from β - naphthol)	
			b) Bisazo dyes: Congo Red* (from nitrobenzene)	
			c) Trisazo Dye: Direct Deep Black EW* (from benzidine)	
			iv)Diphenylmethane dye: Auramine O* (from N,N-dimethyl aniline)	
			v)Triphenylmethane dye:	
			a) Diamine series: Malachite Green* (from benzaldehyde)	
			b) Triamine series: Acid Magenta	
			c) Phenol series: Rosolic acid	
			vi)Heterocyclic Dyes:	
			a) Thiazine dyes: Methylene Blue	
			b) Azine dyes: Safranin T* (from o-toluidine)	
			c) Xanthene Dyes: Eosin* (from phthalic anhydride)	
			d) Oxazine Dyes: Capri Blue	
			e) Acridine Dyes: Acriflavine	
			vii)Quinone Dyes:	
			a) Naphthaquinone: Naphthazarin	
			b) Anthraquinone Dyes: Indanthrene Blue* (from anthraquinone)	
			viii) Indigoid Dyes: Indigo* (from aniline + monochloroacetic acid)	
			ix) Phthalocyanine Dyes: Monastral Fast Blue B	
	3.2		Health and Environmental Hazards of Synthetic Dyes and their	(3L)
			Remediation Processes	
		3.2.	Impact of the textile and leather dye Industry on the environment	
		1	with special emphasis on water pollution	
		3.2.	Health Hazards: Toxicity of dyes w.r.t food colours.	
		2		
		3.2.	Effluent Treatment Strategies:	
		3	Brief introduction to effluent treatment plants (ETP)	
			Primary Remediation processes:(Physical Processes) Sedimentation,	
			Aeration, Sorption (activated charcoal, fly ashetc.)	
			Secondary Remediation processes: Biological Remediation –	
			Biosorption, bioremediation and biodegradation	
			Chemical Remediation: Oxidation Processes (chlorination),	
			Coagulation-flocculation-Precipitation	
			Coaguration-moccuration-recipitation	

|--|

4	4.1		Non-textile uses of dyes:	(8L)
		4.1.	Biomedical uses of dyes	
		1	i) Dyes used in formulations (Tablets, capsules, syrups etc)	
			Indigo carmine, Sunset yellow, Tartrazine	
			ii) Biological staining agents	
			Methylene blue, Crystal violet and Safranine T	
			iii) DNA markers	
			Bromophenol blue, Orange G, Cresol red	
			iv) Dyes as therapeutics	
			Mercurochrome, Acriflavine, Crystal Violet, Prontosil	
		4.1.	Dyes used in food and cosmetics:	
		4.1.		
			i) Properties of dyes used in food and cosmeticsii) Introduction to FDA and FSSAI	
			iii) Commonly used food colours and their limits	
		4.1.	Paper and leather dyes	
		3	i) Structural features of paper and leather	
			i) Dyes applicable to paper and leather	
		4.1.	Miscellaneous dyes	
		4	i) Hair dyes	
			ii) Laser dyes	
			iii) Indicators	
			iv) Security inks	
			iv) Coloured smokes and camouflage colours	
	4.2		Pigments	(3L)
			Definition of pigments, examples, properties of pigments, difference	
			between dyes and pigments.	
			Definition of Lakes and Toners	
	4.2		Deverte ff Le Jacoberg Le Jacoberg Deverse e diese	(41)
	4.3	4.2	Dyestuff Industry - Indian Perspective	(4L)
		4.3. 1	Growth and development of the Indian Dyestuff Industry	
		4.3.	Strengths, Weaknesses, Opportunities and Challenges of the	
		2	Dyestuff industry in India	
		4.3.	Make in India - Future Prospects of the Dye Industry	
		3		

References (For Units III & IV)

- 1. Chemistry of Synthetic Dyes, Vol I IV, Venkatraman K., Academic Press 1972
- 2. The Chemistry of Synthetic Dyes and Pigments, Lubs H.A., Robert E Krieger Publishing Company, NY ,1995
- 3. Chemistry of Dyes and Principles of Dyeing, Shenai V.A., Sevak Publications, 1973
- 4. Environmental Studies, Joseph Benny, Tata McGraw Hill Education, 2005
- Fundamental Concepts of Environmental Chemistry, Sodhi. G. S., Alpha Science International, 2009
- 6. Planning Commission, Niti Aayog, FSSAI and FDA websites
- 7. Green Chemistry for Dyes Removal from Waste Water- Research Trends and Applications, Ed. Sharma S.K., Wiley, 2015
- 8. Environmental Pollution- Monitoring and Control, Khopkar S.M., New Age International (P) Ltd, New Delhi, 1982

Practicals

SEMESTER V

(Drugs and Dyes)

COURSE CODE: USACDD6P1

CREDITS: 02

- 1. O-Methylation of β -naphthol.
- 2. Preparation of Paracetamol form p-aminophenol.
- 3. Preparation of Fluorescein
- 4. TLC of a mixture of dyes (safranine-T, Indigo carmine, methylene blue)

II] Preparation of monograph of any one drug from syllabus by I.P. method. OR Industrial visit Report.
